Abstract
Despite being a tropical country with great potential for solar power, knowledge about the actual performance of photovoltaic (PV) systems in Indonesia remains limited. In this paper, using 5-minute resolution data from 2016 to 2018 obtained from a 1 MW Copper Indium Selenide (CIS) and a 5 kW crystalline silicon (c-Si) PV plant in West Java, we aim to answer the question of how a CIS PV plant performs and degrades in Indonesia's tropical climate and how it compares to a PV system that contains c-Si technology. The methodological approach used includes performance analyses of these PV systems according to IEC standard 61724 and an investigation of the degradation rate using NREL/RdTools. The following results were derived from the analyses: the total annual Hi was 1500 kWh/m2 or around 4.2 kWh/m2/day. The daily-averaged performance ratio, PR, was 91.7 % ± 4 % and 87.4 % ± 7 % for the CIS system with string inverters and a central inverter, respectively. The mean PR of the CIS systems was 12 % higher than that of the c-Si system, which was 79.8 %. Concerning the final yield, Yf, the CIS system with a mean Yf of 3.85 kWh/kWp outperformed the c-Si system by 14 %. The CIS system degraded by 1.53 % per year, which is less than the c-Si system with a degradation rate (Rd) of 3.72 % per year. From these results, it can be concluded that, in this case, CIS technology performs better than c-Si in Indonesia's tropical climate. Uncertainties in the calculation and high values of Rd could be areas for further investigation.
Original language | English |
---|---|
Pages (from-to) | 1082-1092 |
Number of pages | 11 |
Journal | International Journal of Technology |
Volume | 10 |
Issue number | 6 |
DOIs | |
Publication status | Published - 25 Nov 2019 |
Funding
We appreciate the financial support from the Indonesia Endowment Fund for Education (LPDP) and the expert support from Advanced Research on Innovations in Sustainability and Energy (ARISE) of the University of Twente. Thanks to COST Action PEARL PV for the Short Term Scientific Mission (STSM) grant at Eurac Research in Bolzano, Italy.
Keywords
- Degradation
- Indonesia
- Performance
- PV systems
- Tropical climate