TY - JOUR
T1 - A 2D boundary element method for simulating the deformation of axisymmetric compound non-Newtonian drops
AU - Toose, E.M.
AU - Geurts, B.J.
AU - Kuerten, J.G.M.
PY - 1999
Y1 - 1999
N2 - The boundary integral formulation of the solution to the Stokes equations is used to describe the deformation of small compound non-Newtonian axisymmetric drops suspended in a Newtonian fluid that is subjected to an axisymmetric flow field. The non-Newtonian stress is treated as a source term in the Stokes equations, which yields an extra integral over the domains containing non-Newtonian material. By transforming the integral representation for the velocity to cylindrical co-ordinates and performing the integration over the azimuthal direction analytically, the dimension of the problem can be reduced from three to two. A boundary element method for the remaining two-dimensional problem aimed at the simulation of the deformation of such axisymmetric compound non-Newtonian drops is developed. Apart from a numerical validation of the method, simulation results for a drop consisting of an Oldroyd-B fluid and a viscoelastic material are presented. Moreover, the method is extended to compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The simulation results for these drops are verified against theoretical results from literature. Moreover, it is shown that the method can be used to identify the dominant break-up mechanism of compound drops in relation to the specific non-Newtonian character of the membrane. The boundary integral formulation of the solution to the Stokes equations is used to describe the deformation of small compound non-Newtonian axisymmetric drops suspended in a Newtonian fluid that is subjected to an axisymmetric flow field. The non-Newtonian stress is treated as a source term in the Strokes equations, which yields an extra integral over the domains containing non-Newtonian material. By transforming the integral representation for the velocity to cylindrical co-ordinates and performing the integration over the azimuthal direction analytically, the dimension of the problem can be reduced from the three to two. A boundary element method for the remaining two-dimensional problem aimed at the simulation of the deformation of such axisymmetric compound non-Newtonian drops is developed. Apart from a numerical validation of the method, simulation results for a drop consisting of an Oldroyd-B fluid and a viscoeleastic material are presented. Moreover, t method is extended to compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The simulation results for these drops are verified against theoretical results from literature. Moreover, it is shown that the method can be used to identify the dominant break-up mechanism of compound drops in relation to the specific non-Newtonian character of the membrane
AB - The boundary integral formulation of the solution to the Stokes equations is used to describe the deformation of small compound non-Newtonian axisymmetric drops suspended in a Newtonian fluid that is subjected to an axisymmetric flow field. The non-Newtonian stress is treated as a source term in the Stokes equations, which yields an extra integral over the domains containing non-Newtonian material. By transforming the integral representation for the velocity to cylindrical co-ordinates and performing the integration over the azimuthal direction analytically, the dimension of the problem can be reduced from three to two. A boundary element method for the remaining two-dimensional problem aimed at the simulation of the deformation of such axisymmetric compound non-Newtonian drops is developed. Apart from a numerical validation of the method, simulation results for a drop consisting of an Oldroyd-B fluid and a viscoelastic material are presented. Moreover, the method is extended to compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The simulation results for these drops are verified against theoretical results from literature. Moreover, it is shown that the method can be used to identify the dominant break-up mechanism of compound drops in relation to the specific non-Newtonian character of the membrane. The boundary integral formulation of the solution to the Stokes equations is used to describe the deformation of small compound non-Newtonian axisymmetric drops suspended in a Newtonian fluid that is subjected to an axisymmetric flow field. The non-Newtonian stress is treated as a source term in the Strokes equations, which yields an extra integral over the domains containing non-Newtonian material. By transforming the integral representation for the velocity to cylindrical co-ordinates and performing the integration over the azimuthal direction analytically, the dimension of the problem can be reduced from the three to two. A boundary element method for the remaining two-dimensional problem aimed at the simulation of the deformation of such axisymmetric compound non-Newtonian drops is developed. Apart from a numerical validation of the method, simulation results for a drop consisting of an Oldroyd-B fluid and a viscoeleastic material are presented. Moreover, t method is extended to compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The simulation results for these drops are verified against theoretical results from literature. Moreover, it is shown that the method can be used to identify the dominant break-up mechanism of compound drops in relation to the specific non-Newtonian character of the membrane
U2 - 10.1002/(SICI)1097-0363(19990730)30:6<653::AID-FLD852>3.0.CO;2-H
DO - 10.1002/(SICI)1097-0363(19990730)30:6<653::AID-FLD852>3.0.CO;2-H
M3 - Article
SN - 0271-2091
VL - 30
SP - 653
EP - 674
JO - International Journal for Numerical Methods in Fluids
JF - International Journal for Numerical Methods in Fluids
IS - 6
ER -