A 160uW 8-Channel active electrode system for EEG monitoring

J. Xu, R.F. Yazicioglu, B. Grundlehner, P.J.A. Harpe, K.A.A. Makinwa, C. Van Hoof

Research output: Contribution to journalArticleAcademicpeer-review

168 Citations (SciVal)
3 Downloads (Pure)


This paper presents an active electrode system for gel-free biopotential EEG signal acquisition. The system consists of front-end chopper amplifiers and a back-end common-mode feedback (CMFB) circuit. The front-end AC-coupled chopper amplifier employs input impedance boosting and digitally-assisted offset trimming. The former increases the input impedance of the active electrode to $2~{rm G}Omega$ at 1 Hz and the latter limits the chopping induced output ripple and residual offset to 2 mV and 20 mV, respectively. Thanks to chopper stabilization, the active electrode achieves $0.8~mu {rm Vrms}~(0.5-100~{rm Hz})$ input referred noise. The use of a back-end CMFB circuit further improves the CMRR of the active electrode readout to 82 dB at 50 Hz. Both front-end and back-end circuits are implemented in a $0.18~mu{rm m}$ CMOS process and the total current consumption of an 8-channel readout system is $88~mu {rm A}$ from 1.8 V supply. EEG measurements using the proposed active electrode system demonstrate its benefits compared to passive electrode systems, namely reduced sensitivity to cable motion artifacts and mains interference.
Original languageEnglish
Pages (from-to)555-567
Number of pages13
JournalIEEE Transactions on Biomedical Circuits and Systems
Issue number6
Publication statusPublished - 2011


Dive into the research topics of 'A 160uW 8-Channel active electrode system for EEG monitoring'. Together they form a unique fingerprint.

Cite this