40-Gb/s all-optical processing systems using hybrid photonic integration technology

E. Kehayas, D. Tsiokos, P. Bakapoulos, D. Apostolopoulos, D. Petrantonakis, L. Stampoulidis, A. Poustie, R. McDougall, G.D. Maxwell, Y. Liu, S. Zhang, H.J.S. Dorren, J. Seoane, P. Van Holm-Nielsen, P. Jeppesen, H. Avramopoulos

Research output: Contribution to journalArticleAcademicpeer-review

44 Citations (Scopus)

Abstract

This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be treated as generic switching elements and, when efficiently interconnected, can form larger and more functional network subsystems. Specifically, this paper reports on all-optical subsystems capable of performing on-the-fly packet clock recovery, 3R regeneration, label/payload separation, and packet routing using the wavelength domain. The all-optical subsystems are capable of operating with packet-mode traffic and are suitable for all-optical label-switched and self-routed network nodes. The intelligent functionality offered, combined with the compactness and stability of the optical gates, verifies the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems-on-chip utilizing multiple SOA-MZI optical gates on a single chip
Original languageEnglish
Pages (from-to)4903-4911
Number of pages9
JournalJournal of Lightwave Technology
Volume24
Issue number12
DOIs
Publication statusPublished - 2006

Fingerprint Dive into the research topics of '40-Gb/s all-optical processing systems using hybrid photonic integration technology'. Together they form a unique fingerprint.

Cite this