21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom bell surfaces

M. Jošt (Corresponding author), T. Bertram, D. Koushik, J.A. Marquez, M.A. Verheijen, M.D. Heinemann, E. Köhnen, A. Al-Ashouri, S. Braunger, F. Lang, B. Rech, T. Unold, M. Creatore, I. Lauermann, C.A. Kaufmann, R. Schlatmann, S. Albrecht

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as-grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx/perovskite interface. This hole transport bilayer enables a 21.6% stabilized PCE of the tandem device at ∼0.8 cm2 active area. We use TEM/EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine-tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite/CIGSe tandems toward predicted PCE estimates above 30%.
LanguageEnglish
Pages583-590
Number of pages8
JournalACS Energy Letters
Volume4
DOIs
StatePublished - 24 Jan 2019

Fingerprint

Perovskite
Solar cells
Conversion efficiency
Volatile organic compounds
Atomic layer deposition
Energy dispersive spectroscopy
Photoluminescence
Polymers
Tuning
perovskite
Transmission electron microscopy

Cite this

Jošt, M. ; Bertram, T. ; Koushik, D. ; Marquez, J.A. ; Verheijen, M.A. ; Heinemann, M.D. ; Köhnen, E. ; Al-Ashouri, A. ; Braunger, S. ; Lang, F. ; Rech, B. ; Unold, T. ; Creatore, M. ; Lauermann, I. ; Kaufmann, C.A. ; Schlatmann, R. ; Albrecht, S./ 21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom bell surfaces. In: ACS Energy Letters. 2019 ; Vol. 4. pp. 583-590
@article{964b059471b447f1a70e35dc191104cf,
title = "21.6{\%}-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom bell surfaces",
abstract = "Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as-grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx/perovskite interface. This hole transport bilayer enables a 21.6{\%} stabilized PCE of the tandem device at ∼0.8 cm2 active area. We use TEM/EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine-tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite/CIGSe tandems toward predicted PCE estimates above 30{\%}.",
author = "M. Jošt and T. Bertram and D. Koushik and J.A. Marquez and M.A. Verheijen and M.D. Heinemann and E. Köhnen and A. Al-Ashouri and S. Braunger and F. Lang and B. Rech and T. Unold and M. Creatore and I. Lauermann and C.A. Kaufmann and R. Schlatmann and S. Albrecht",
year = "2019",
month = "1",
day = "24",
doi = "10.1021/acsenergylett.9b00135",
language = "English",
volume = "4",
pages = "583--590",
journal = "ACS Energy Letters",
issn = "2380-8195",
publisher = "American Chemical Society",

}

Jošt, M, Bertram, T, Koushik, D, Marquez, JA, Verheijen, MA, Heinemann, MD, Köhnen, E, Al-Ashouri, A, Braunger, S, Lang, F, Rech, B, Unold, T, Creatore, M, Lauermann, I, Kaufmann, CA, Schlatmann, R & Albrecht, S 2019, '21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom bell surfaces' ACS Energy Letters, vol. 4, pp. 583-590. DOI: 10.1021/acsenergylett.9b00135

21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom bell surfaces. / Jošt, M. (Corresponding author); Bertram, T.; Koushik, D.; Marquez, J.A.; Verheijen, M.A.; Heinemann, M.D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F.; Rech, B.; Unold, T.; Creatore, M.; Lauermann, I.; Kaufmann, C.A.; Schlatmann, R.; Albrecht, S.

In: ACS Energy Letters, Vol. 4, 24.01.2019, p. 583-590.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - 21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom bell surfaces

AU - Jošt,M.

AU - Bertram,T.

AU - Koushik,D.

AU - Marquez,J.A.

AU - Verheijen,M.A.

AU - Heinemann,M.D.

AU - Köhnen,E.

AU - Al-Ashouri,A.

AU - Braunger,S.

AU - Lang,F.

AU - Rech,B.

AU - Unold,T.

AU - Creatore,M.

AU - Lauermann,I.

AU - Kaufmann,C.A.

AU - Schlatmann,R.

AU - Albrecht,S.

PY - 2019/1/24

Y1 - 2019/1/24

N2 - Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as-grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx/perovskite interface. This hole transport bilayer enables a 21.6% stabilized PCE of the tandem device at ∼0.8 cm2 active area. We use TEM/EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine-tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite/CIGSe tandems toward predicted PCE estimates above 30%.

AB - Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as-grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx/perovskite interface. This hole transport bilayer enables a 21.6% stabilized PCE of the tandem device at ∼0.8 cm2 active area. We use TEM/EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine-tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite/CIGSe tandems toward predicted PCE estimates above 30%.

U2 - 10.1021/acsenergylett.9b00135

DO - 10.1021/acsenergylett.9b00135

M3 - Article

VL - 4

SP - 583

EP - 590

JO - ACS Energy Letters

T2 - ACS Energy Letters

JF - ACS Energy Letters

SN - 2380-8195

ER -