Abstract
Microfabricated magnetoresistive elements based on either the anisotropic or the giant magnetoresistance effect were tested for their frequency dependent resistance noise behavior at room temperature in a dc magnetic field, using a dc sense current. Thermal resistance noise was the dominant noise source above about 10 kHz. At low frequencies the resistance noise was found to be dominated by a 1/f contribution that depends on the applied magnetic field. The 1/f noise is relatively low and field independent when the element is in a saturated state and contains a relatively large and field dependent excess contribution when the magnetic field is in the sensitive field range of the element. The 1/f noise level observed in saturation is comparable to the 1/f noise level found in nonmagnetic metals; the excess noise has a magnetic origin. The variation of the excess noise level with the applied dc magnetic field can be explained qualitatively using a simple model based on thermal excitations of the magnetization direction.
Original language | English |
---|---|
Pages (from-to) | 6152-6164 |
Number of pages | 13 |
Journal | Journal of Applied Physics |
Volume | 82 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1997 |