Commercial feasibility of supramolecular polymers in life sciences and medical technology

    Recognition: ERCProof of conceptScientific

    Description

    Biomaterials are constructs that can be integrated in the human body to replace or support a biological function. However, their applicability is still limited because they fail to fully integrate with the living body. We have shown that our supramolecular polymer platform has huge potential as biomaterial because its unique properties allow optimal integration with living cells and tissues. Supramolecular polymers are fundamentally different from conventional polymers as their building blocks are not connected permanently but in a reversible fashion using multiple hydrogen bonds. While preserving the properties of conventional polymers, supramolecular polymers can be processed at low temperatures and morphological and mechanical properties can easily be controlled. Due to these properties and the modular approach we introduced, the biomaterial can easily be loaded with the right bioactive agents and can be given the essential properties for optimal integration with living tissues. Moreover, properties such as shape memory and the capacity to self-heal open a whole new window of biomedical applications. We see a broad range of application opportunities like dialysis, innovative sutures and drug delivery where our platform can have a tremendous impact on the life of millions of patients. Right now, we have a clear need to identify the most lucrative and feasible product-market combinations for the technology platform. In addition a detailed plan for further commercialization and product development needs to be developed. This requires extensive research on relevant medical needs, the market, and our IP position. With the current proven technical feasibility of our concept, the ERC Proof of Concept Grant would be perfectly suited to study the commercial feasibility of several products and to build a sound commercialisation plan. Doing so, we can ensure that the societal potential of this valuable technology will be fully leveraged.
    Degree of recognitionInternational
    OrganisationsEuropean Research Council

    Fingerprint

    Biomaterials
    Polymers
    Tissue
    Dialysis
    Shape memory effect
    Drug delivery
    Product development
    Hydrogen bonds
    Cells
    Acoustic waves
    Mechanical properties
    Temperature