• Source: Scopus

Content available in repository

If you made any changes in Pure these will be visible here soon.

Personal profile


There is information in negative results - not only of algorithms, but also unsuccessful papers, grants or attempts at work-life balance. We could all learn from sharing such failures with each other.

Research profile

Veronika Cheplygina is an assistant professor at the research group Medical Image Analysis of the department of Biomedical Engineering at Eindhoven University of Technology.  She works on machine learning algorithms for medical image analysis, such as in detecting the chronic lung disease COPD in chest computed tomography scans. Her research also concerns more general aspects of machine learning, such as multiple instance learning, transfer learning, learning with similarities and learning from crowdsourced labels.

Academic background

Veronika Cheplygina studied Media & Knowledge Engineering at Delft University of Technology, where she obtained her MSc in 2010. She then started PhD research at the Pattern Recognition Laboratory of the same university and obtained her doctorate in 2015 with her thesis "Dissimilarity-Based Multiple Instance Learning". In 2013, she was a Visiting Researcher at the Machine Learning and Computational Biology group at MPI Intelligent Systems, Tübingen, Germany. In 2015 and 2016, she was a postdoctoral researcher at the Biomedical Imaging Group Rotterdam (The Netherlands, part of the Erasmus Medical Center). In 2017, she was appointed assistant professor at the Medical Image Analysis group of Eindhoven University of Technology (TU/e, The Netherlands).

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being


Dive into the research topics where Veronika Cheplygina is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles


Recent external collaboration on country/territory level. Dive into details by clicking on the dots or