If you made any changes in Pure these will be visible here soon.

Personal profile

Academic background

Suzanne Timmermans (Geleen, 1993) received her M.Sc. in molecular life sciences from Radboud University in 2016. During her studies she worked on human mesenchymal stem cell culture in 3D hydrogels in the Physical Organic Chemistry group of Prof. Wilhelm Huck (Radboud University), in situ activatable cell-penetrating peptides in the Bio-Organic Chemistry group of Prof. Jan van Hest (Radboud University) and on a glycosyltransferase with expanded sugar substrate specificity in the group of Prof. Carolyn Bertozzi (Stanford University). As of March 2017, she is a Ph.D. candidate working on protein nanocage-based artificial organelles in the group of Prof. Jan van Hest.

Quote

Protein-based artificial organelles are very promising tools for expansion of cellular function

Research profile

Compartmentalization of catalytic processes is a key feature that nature employs for maintaining temporospatial control over biological processes. Organs, tissues and cells are all examples of biological compartments. On an even smaller scale, intracellular organelles are the most important compartments in which catalytic processes take place. In the confined spaces of these organelles, the specific microenvironment maintains optimal enzyme function. More importantly, whole enzyme cascades can be organized within one organelle, enabling efficient tunneling of intermediates from one enzyme to the next and preventing toxic effects of intermediates.

In order to forward our understanding of the role of confinement in enzyme function, artificial organelles can be employed. Although most native organelles are encapsulated by a lipid-based membrane, protein nanocages have great potential for the development of artificial organelles. Especially viral capsids, such as that of cowpea chlorotic mottle virus (CCMV), are interesting candidates for development into artificial organelle shells. That is, the robust CCMV capsid is biocompatible and forms nanostructures with well-defined sizes and shapes. Even more intriguing, multiple approaches have been developed for the encapsulation of enzymes in viral capsids, resulting in uniform protein nanocage-based nanoreactors. These are exceptionally well-suited for development into artificial organelles.

The aim of my research project is to further our knowledge on the role of confinement in biology by creating artificial organelles based on protein nanocages and transient or permanent introduction of these catalytic compartments into hybrid cells. This may not only contribute to a better understanding of how confinement contributes to enzyme function, but additionally it may open up opportunities for the introduction of new functionalities to cells.

Fingerprint Dive into the research topics where Suzanne B.P.E. Timmermans is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 10 Similar Profiles
Peptides Chemical Compounds
Uridine Diphosphate Sugars Chemical Compounds
Bromovirus Medicine & Life Sciences
Nanoreactors Chemical Compounds
Cell-Penetrating Peptides Chemical Compounds
Artificial Cells Medicine & Life Sciences
Self assembly Chemical Compounds
Capsid Medicine & Life Sciences

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2018 2019

  • 23 Citations
  • 4 Article
  • 1 Conference contribution
  • 1 Review article
4 Citations (Scopus)
25 Downloads (Pure)

Click to enter: activation of oligo-arginine cell-penetrating peptides by bioorthogonal tetrazine ligations

Bode, S. A., Timmermans, S. B. P. E., Eising, S., van Gemert, S. P. W., Bonger, K. M. & Löwik, D. W. P. M., 21 Jan 2019, In : Chemical Science. 10, 3, p. 701-705 5 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
File
Cell-Penetrating Peptides
Arginine
Chemical activation
Peptides
Cell membranes
1 Citation (Scopus)

Engineering orthogonal polypeptide GalNAc-transferase and UDP-sugar pairs

Choi, J., Wagner, L. J. S., Timmermans, S. B. P. E., Malaker, S. A., Schumann, B., Gray, M. A., Debets, M. F., Takashima, M., Gehring, J. & Bertozzi, C. R., 28 Aug 2019, In : Journal of the American Chemical Society. 141, 34, p. 13442-13453 12 p.

Research output: Contribution to journalArticleAcademicpeer-review

Uridine Diphosphate Sugars
Polypeptides
Sugars
Substrate Specificity
Peptides
2 Citations (Scopus)
12 Downloads (Pure)

Physicochemical characterization of polymer-stabilized coacervate protocells

Yewdall, N. A., Buddingh, B. C., Altenburg, W. J., Timmermans, S. B. P. E., Vervoort, D. F. M., Abdelmohsen, L. K. E. A., Mason, A. F. & van Hest, J., 15 Oct 2019, In : ChemBioChem. 20, 20, p. 2643-2652 10 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
File
Artificial Cells
Biochemical Phenomena
Polymers
Membranes
Macromolecules

Engineering protein-based nanoparticle conjugates for nanomedicine applications

van Hest, J., Pille, J., Abdelghani, M., Timmermans, S., Vervoort, D. & Pretto, C., 19 Aug 2018, 256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond .

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

14 Citations (Scopus)
69 Downloads (Pure)

Self-assembled nanoreactors based on peptides and proteins

Timmermans, S. B. P. E. & van Hest, J. C. M., 1 May 2018, In : Current Opinion in Colloid and Interface Science. 35, p. 26-35 10 p.

Research output: Contribution to journalReview articleAcademicpeer-review

Open Access
File
Nanoreactors
Peptides
peptides
proteins
Proteins