If you made any changes in Pure these will be visible here soon.

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2014 2019

  • 13 Citations
  • 3 Chapter
  • 2 Conference contribution
  • 1 Article

The SpectACl of nonconvex clustering: a spectral approach to density-based clustering.

Hess, S., Duivesteijn, W., Honysz, P. & Morik, K., 2019, Proceedings of 33rd AAAI Conference on Artificial IntelligenceAAAI. Association for the Advancement of Artificial Intelligence, 27 p.

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

Open Access
File
Experiments

The relationship of DBSCAN to matrix factorization and spectral clustering

Schubert, E., Hess, S. & Morik, K., 2018, LWDA 2018 - Lernen, Wissen, Daten, Analysen 2018: Proceedings of the conference "Lernen, Wissen, Daten Analysen. Aachen: RWTH Aachen, p. 330-334 5 p. (CEUR workshop proceedings; vol. 2191)

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Open Access
File
Factorization
Clustering algorithms
1 Citation (Scopus)

The trustworthy pal: controlling the false discovery rate in boolean matrix factorization

Hess, S., Piatkowski, N. & Morik, K., 2018, Proceedings of the 2018 SIAM International Conference on Data Mining. Philadelphia : Society for Industrial and Applied Mathematics (SIAM), p. 405-413 9 p.

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

Open Access
File
Factorization
Demonstrations
2 Citations (Scopus)

C-salt: mining class-specific alterations in boolean matrix factorization

Hess, S. & Morik, K., 2017, Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, p. 547-563 17 p. (Lecture Notes in Computer Science ; vol. 10534)

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

Open Access
File
Salt mines
Factorization
Specifications
8 Citations (Scopus)

The PRIMPING routine: tiling through proximal alternating linearized minimization

Hess, S., Morik, K. & Piatkowski, N., 2017, In : Data Mining and Knowledge Discovery. 31, 4, p. 1090-1131 42 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
File
Factorization
Data compression
Tile
Costs

Courses