If you made any changes in Pure these will be visible here soon.

Research Output

Filter
Chapter

Does relevance matter to data mining research?

Pechenizkiy, M., Puuronen, S. & Tsymbal, A., 2008, Data Mining: Foundations and Practice. Lin, T. Y., Xie, Y., Wasilewska, A. & Liau, C. J. (eds.). Berlin: Springer, p. 251-275 (Studies in Computational Intelligence; vol. 118).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

4 Citations (Scopus)

Introduction

Romero, C., Ventura, S., Pechenizkiy, M. & Baker, R. S. J. D., 1 Jan 2010, Handbook of Educational Data Mining. CRC Press, p. 1-6 6 p.

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

11 Citations (Scopus)

Introduction

Romero, C., Ventura, S., Pechenizkiy, M. & Baker, de, R. S. J., 2011, Handbook of Educational Data Mining. Romero, C., Ventura, S., Pechenizkiy, M. & Baker, R. (eds.). London: CRC Press, p. 1-6 (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

Pattern-based emotion classification on social media

Tromp, E. & Pechenizkiy, M., 2015, Advaces in Social Media Research. Medhat Gaber, M., Cocea, M., Wiratunga, N. & Goker, A. (eds.). Cham: Springer, p. 1-20 151 p. (Studies in Computational Intelligence; vol. 602).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

7 Citations (Scopus)
9 Downloads (Pure)

Process mining from educational data

Trcka, N., Pechenizkiy, M. & Aalst, van der, W. M. P., 2011, Handbook of Educational Data Mining. Romero, C., Ventura, S., Pechenizkiy, M. & Baker, R. (eds.). London: CRC Press, p. 123-142 (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

1 Downloads (Pure)

Techniques for discrimination-free predictive models

Kamiran, F., Calders, T. G. K. & Pechenizkiy, M., 2013, Discrimination and Privacy in the Information Society: Effects of Data Mining and Profiling Large Databases. Custers, B. H. M., Calders, T. G. K., Schermer, B. W. & Zarsky, T. Z. (eds.). Berlin: Springer, p. 223-239 (Studies in Applied Philosophy, Epistemology and Rational Ethics; vol. 3).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

9 Citations (Scopus)
4 Downloads (Pure)

Technologies for dealing with information overload : an engineers' point of view

Calders, T. G. K., Fletcher, G. H. L., Kamiran, F. & Pechenizkiy, M., 2012, Information overload : an international challenge for professional engineers and technical communicators. Strother, J. B., Ulijn, J. M. & Fazal, Z. (eds.). Wiley-IEEE, p. 175-202

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

2 Citations (Scopus)

Towards the generic framework for utility considerations in data mining research

Puuronen, S. & Pechenizkiy, M., 2010, Data Mining for Business Applications. Soares, C. & Ghani, R. (eds.). Amsterdam: IOS Press, p. 49-65 (Frontiers in Artificial Intelligence and Applications; vol. 218).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

4 Citations (Scopus)
2 Downloads (Pure)