• 5271
    Citations - based on content available in repository [source: Scopus]
20112024

Content available in repository

Personal profile

Research profile

Mitko Veta is an assistant professor at the TU/e research group Medical Image Analysis, department of Biomedical Engineering. His research concerns the design, implementation and evaluation of image analysis methods for histopathology images and digital slides. Currently his focus is on the development and application of deep learning methods for medical image analysis. 

The research aims to develop automatic quantitative histopathology image analysis algorithms that will increase the reproducibility and accuracy of pathology reporting and reduce the workload of pathologists. This will lead to better treatment planning for the patients and reduction of healthcare costs.

Academic background

MitkoVeta studied Electrical Engineering at the Ss. Cyril and Methodius University in Skopje (Macedonia) where he in 2009 received his Master's degree on Digital Signal Processing with a thesis on digital video classification. In 2010, he moved to the University Medical Center Utrecht (The Netherlands) to perform PhD research on the topic of automatic analysis of histopathology images. In 2014, he obtained his doctorate and started as a postdoctoral researcher at Eindhoven University of Technology (TU/e, the Netherlands). In 2016, he was appointed assistant professor with the TU/e research group Medical Image Analysis of the department of Biomedical Engineering.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being

Fingerprint

Dive into the research topics where Mitko Veta is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or