• 1966
    Citations - based on content available in repository [source: Scopus]
20062025

Content available in repository

Filter
Conference contribution

Search results

  • 2024

    An Analysis of Evolutionary Migration Models for Multi-Objective, Multi-Fidelity AutoML

    Campero Jurado, I. (Corresponding author) & Vanschoren, J., 29 Jan 2024, 2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023. Institute of Electrical and Electronics Engineers, p. 2940-2945 6 p. 10394059

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    4 Downloads (Pure)
  • Continual Learning with Dynamic Sparse Training: Exploring Algorithms for Effective Model Updates

    Yildirim, M. O., Gok Yildirim, E. C., Sokar, G., Mocanu, D. C. & Vanschoren, J., 6 Jan 2024, Conference on Parsimony and Learning, 3-6 January 2024, Hongkong, China. Chi, Y., Dziugaite, G. K., Qu, Q., Wang Wang, A. & Zhu, Z. (eds.). PMLR, p. 94-107 14 p. (Proceedings of Machine Learning Research; vol. 234).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    7 Citations (Scopus)
    40 Downloads (Pure)
  • Croissant: A Metadata Format for ML-Ready Datasets.

    Akhtar, M., Benjelloun, O., Conforti, C., Gijsbers, P., Giner-Miguelez, J., Jain, N., Kuchnik, M., Lhoest, Q., Marcenac, P., Maskey, M., Mattson, P., Oala, L., Ruyssen, P., Shinde, R., Simperl, E., Thomas, G., Tykhonov, S., Vanschoren, J., van der Velde, J. & Vogler, S. & 1 others, Wu, C.-J., 9 Jun 2024, DEEM '24: Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning. Association for Computing Machinery, Inc., p. 1-6 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    18 Citations (Scopus)
    87 Downloads (Pure)
  • MALIBO: Meta-learning for Likelihood-free Bayesian Optimization

    Pan, J., Falkner, S., Berkenkamp, F. & Vanschoren, J., 2024, International Conference on Machine Learning, 21-27 July 2024, Vienna, Austria. PMLR, p. 39102-39134 33 p. (Proceedings of Machine Learning Research; vol. 235).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    6 Downloads (Pure)
  • TRUSTLLM: Trustworthiness in Large Language Models

    Huang, Y. (Corresponding author), Sun, L., Wang, H., Wu, S., Zhang, Q., Li, Y., Gao, C., Huang, Y., Lyu, W., Zhang, Y., Li, X., Sun, H., Liu, Z., Liu, Y., Wang, Y., Zhang, Z., Vidgen, B., Kailkhura, B., Xiong, C. & Xiao, C. & 51 others, Li, C., Xing, E., Huang, F., Liu, H., Ji, H., Wang, H., Zhang, H., Yao, H., Kellis, M., Zitnik, M., Jiang, M., Bansal, M., Zou, J., Pei, J., Liu, J., Gao, J., Han, J., Zhao, J., Tang, J., Wang, J., Vanschoren, J., Mitchell, J. C., Shu, K., Xu, K., Chang, K. W., He, L., Huang, L., Backes, M., Gong, N. Z., Yu, P. S., Chen, P. Y., Gu, Q., Xu, R., Ying, R., Ji, S., Jana, S., Chen, T., Liu, T., Zhou, T., Wang, W., Li, X., Zhang, X., Wang, X., Xie, X., Chen, X., Wang, X., Liu, Y., Ye, Y., Cao, Y., Chen, Y. & Zhao, Y., 27 Jul 2024, Proceedings of the 41st International Conference on Machine Learning. Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J. & Berkenkamp, F. (eds.). PMLR, p. 20166-20270 105 p. (Proceedings of Machine Learning Research (PMLR); vol. 235).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    13 Citations (Scopus)
    261 Downloads (Pure)
  • 2023

    AdaCL: Adaptive Continual Learning

    Yildirim, E. C. G., Yildirim, M. O., Kilickaya, M. & Vanschoren, J., 2023, Proceedings of the 1st ContinualAI Unconference, 2023. PMLR, p. 15-24 10 p. (Proceedings of Machine Learning Research; vol. 249).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    4 Downloads (Pure)
  • Are Labels Needed for Incremental Instance Learning?

    Kilickaya, M. & Vanschoren, J., 14 Aug 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023. Institute of Electrical and Electronics Engineers, p. 2401-2409 9 p. 10208445

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    3 Citations (Scopus)
  • AutoML for Outlier Detection with Optimal Transport Distances

    Singh, P. & Vanschoren, J., 2023, Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023. Elkind, E. (ed.). International Joint Conferences on Artificial Intelligence (IJCAI), p. 7175-7178 4 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    6 Downloads (Pure)
  • DataPerf: Benchmarks for Data-Centric AI Development

    Mazumder, M., Banbury, C., Yao, X., Karlaš, B., Rojas, W. G., Diamos, S., Diamos, G., He, L., Parrish, A., Kirk, H. R., Quaye, J., Rastogi, C., Kiela, D., Jurado, D., Kanter, D., Mosquera, R., Ciro, J., Aroyo, L., Acun, B. & Chen, L. & 24 others, Raje, M. S., Bartolo, M., Eyuboglu, S., Ghorbani, A., Goodman, E., Inel, O., Kane, T., Kirkpatrick, C. R., Kuo, T. S., Mueller, J., Thrush, T., Vanschoren, J., Warren, M., Williams, A., Yeung, S., Ardalani, N., Paritosh, P., Zhang, C., Zou, J., Wu, C. J., Coleman, C., Ng, A., Mattson, P. & Reddi, V. J., 2023, 37th Conference on Neural Information Processing Systems, NeurIPS 2023. Neural information processing systems foundation, 28 p. (Advances in Neural Information Processing Systems; vol. 36).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    17 Citations (Scopus)
    16 Downloads (Pure)
  • Efficient-DASH: Automated Radar Neural Network Design Across Tasks and Datasets

    Boot, T., Cazin, N., Sanberg, W. & Vanschoren, J., 27 Jul 2023, 2023 IEEE Intelligent Vehicles Symposium, IV 2023. Institute of Electrical and Electronics Engineers, 7 p. 10186807

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    31 Downloads (Pure)
  • Locality-Aware Hyperspectral Classification

    Zhou, F., Kilickaya, M. & Vanschoren, J., 2023, The 34th British Machine Vision Conference Proceedings. p. 22-24

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
  • Neural Architecture Search for Visual Anomaly Segmentation

    Kerssies, T. & Vanschoren, J., 2023, Proceedings of the Second International Conference on Automated Machine Learning, AutoML 2023. Faust, A., Garnett, R., White, C., Hutter, F. & Gardner, J. R. (eds.). PMLR, 14 p. (Proceedings of Machine Learning Research; vol. 224).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    8 Downloads (Pure)
  • NeurIPS’22 Cross-Domain MetaDL Challenge: Results and lessons learned

    Carrión-Ojeda, D., Alam, M., Escalera, S., Farahat, A., Ghosh, D., Diaz, T. G., Gupta, C., Guyon, I., Ky, J. R., Lee, X. Y., Liu, X., Mohr, F., Nguyen, M. H., Pintelas, E., Roth, S., Schaub-Meyer, S., Sun, H., Ullah, I., Vanschoren, J. & Vidyaratne, L. & 2 others, Wu, J. & Yin, X., 2023, Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS 2022. Ciccone, M., Stolovitzky, G. & Albrecht, J. (eds.). PMLR, p. 50-72 23 p. (Proceedings of Machine Learning Research; vol. 220).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    1 Citation (Scopus)
  • 2022

    Faster Performance Estimation for NAS with Embedding Proximity Score

    Franken, G., Singh, P. & Vanschoren, J., 2022, ECML/PKDD Workshop on Meta-Knowledge Transfer 2022. Brazdil, P., van Rijn, J. N., Gouk, H. & Mohr, F. (eds.). PMLR, p. 51-61 11 p. (Proceedings of Machine Learning Research (PMLR); vol. 191).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    1 Citation (Scopus)
  • Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification

    Ullah, I., Carrión-Ojeda, D., Escalera, S., Guyon, I., Huisman, M., Mohr, F., van Rijn, J. N., Sun, H., Vanschoren, J. & Vu, P. A., 2022, Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022. Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K. & Oh, A. (eds.). Neural information processing systems foundation, (Advances in Neural Information Processing Systems; vol. 35).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    21 Citations (Scopus)
  • Multi-fidelity optimization method with asynchronous generalized island model for AutoML

    Campero Jurado, I. & Vanschoren, J., 19 Jul 2022, GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference Companion. Fieldsend, J. E. (ed.). New York: Association for Computing Machinery, Inc., p. 220-223 4 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    2 Citations (Scopus)
    2 Downloads (Pure)
  • 2021

    Advances in MetaDL: AAAI 2021 challenge and workshop

    Baz, A. E., Guyon, I., Liu, Z., van Rijn, J. N., Treguer, S. & Vanschoren, J., 2021, 2021 AAAI Workshop on Meta-Learning and MetaDL Challenge. Guyon, I., van Rijn, J. N., Treguer, S. & Vanschoren, J. (eds.). PMLR, p. 1-16 16 p. (Proceedings of Machine Learning Research (PMLR); vol. 140).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    4 Citations (Scopus)
  • GAMA: A General Automated Machine Learning Assistant

    Gijsbers, P. (Corresponding author) & Vanschoren, J., 25 Feb 2021, Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part V. Dong, Y., Ifrim, G., Mladenić, D., Saunders, C. & Van Hoecke, S. (eds.). Cham: Springer, p. 560-564 5 p. (Lecture Notes in Computer Science (LNCS); vol. 12461)(Lecture Notes in Artificial Intelligence (LNAI); vol. 12461).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    21 Citations (Scopus)
    1 Downloads (Pure)
  • Meta-learning for symbolic hyperparameter defaults

    Gijsbers, P., Pfisterer, F., van Rijn, J. N., Bischl, B. & Vanschoren, J., 8 Jul 2021, GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion. Chicano, F. (ed.). New York: Association for Computing Machinery, Inc., p. 151-152 2 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    5 Citations (Scopus)
  • OpenML Benchmarking Suites

    Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter, F., Lang, M., Mantovani, R. G., Rijn, J. N. V. & Vanschoren, J., 2021, Proceedings of the NeurIPS 2021 Datasets and Benchmarks Track.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

  • 2020

    Beyond Bag-of-Concepts: Vectors of Locally Aggregated Concepts

    Grootendorst, M. & Vanschoren, J., 2020, Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2019, Proceedings. Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M. & Robardet, C. (eds.). Cham: Springer, p. 681-696 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11907 LNAI).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    5 Citations (Scopus)
  • The ABC of data: A classifying framework for data readiness

    Castelijns, L. A., Maas, Y. & Vanschoren, J., 2020, Machine Learning and Knowledge Discovery in Databases - International Workshops of ECML PKDD 2019, Proceedings. Cellier, P. & Driessens, K. (eds.). Springer, p. 3-16 14 p. (Communications in Computer and Information Science; vol. 1167 CCIS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    9 Citations (Scopus)
    223 Downloads (Pure)
  • 2018

    Data augmentation using conditional generative adversarial networks for leaf counting in arabidopsis plants

    Zhu, Y., Aoun, M., Krijn, M. P. C. M. & Vanschoren, J., Aug 2018, British Machine Vision Conference: Workshop on Computer Vision Problems in Plant Phenotyping. 11 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    1 Downloads (Pure)
  • 2017

    Hyper-parameter tuning of a decision tree induction algorithm

    Mantovani, R. G., Horváth, T., Cerri, R., Vanschoren, J. & de Carvalho, A. C. P. L. F., 1 Feb 2017, 5th Brazilian Conference on Intelligent Systems, BRACIS 2016; Recife, Pernambuco; Brazil; 9 October 2016 through 12 October 2016. Piscataway: Institute of Electrical and Electronics Engineers, p. 37-42 6 p. 7839559

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    78 Citations (Scopus)
    3 Downloads (Pure)
  • Layered TPOT : speeding up tree-based pipeline optimization

    Gijsbers, P., Vanschoren, J. & Olson, R., 22 Sept 2017, Proceedings of the International Workshop on Automatic Selection, Configuration and Composition of Machine Learning Algorithms (AutoML 2017), 10 August 2017, Sydney, Australia: Collocated with ECMLPKDD 2017. Brazdil, P., Vanschoren, J., Hutter, F. & Hoos, H. (eds.). CEUR-WS.org, p. 49-68 20 p. (CEUR Workshop Proceedings; vol. 1998).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    4 Citations (Scopus)
    172 Downloads (Pure)
  • 2016

    Anticipating habit formation: a psychological computing approach to behavior change support

    Zhang, C., van Wissen, A., Lakens, D., Vanschoren, J., Ruyter, de, B. E. R. & IJsselsteijn, W. A., 2016, Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. New York: Association for Computing Machinery, Inc., p. 1247-1254

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    4 Citations (Scopus)
    2 Downloads (Pure)
  • Having a blast : meta-learning and heterogeneous ensembles for data streams

    van Rijn, J. N., Holmes, G., Pfahringer, B. & Vanschoren, J., 7 Jan 2016, 15th IEEE International Conference on Data Mining (ICDM 2015), 14-17 November 2015, Atlantic City, New Jersey. Piscataway: Institute of Electrical and Electronics Engineers, p. 1003-1008 6 p. 7373426

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    40 Citations (Scopus)
    1 Downloads (Pure)
  • Preface

    Festa, P., Sellmann, M. & Vanschoren, J., 2016, Learning and Intelligent Optimization: 10th International Conference, LION 10, Ischia, Italy, May 29 - June 1, 2016, Revised Selected Papers. Vanschoren, J. (ed.). Cham: Springer, p. V-VI (Lecture Notes in Computer Science (LNCS); vol. 10079).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

  • 2015

    Algorithm selection via meta-learning and sample-based active testing

    Abdulrahman, S. M., Brazdil, P., van Rijn, J. N. & Vanschoren, J., 2015, International Workshop on Meta-Learning and Algorithm Selection (MetaSel 2015, Porto, Portugal September 7, 2015; co-located with ECMLPKDD 2015). Vanschoren, J., Brazdil, P., Giraud-Carrier, C. & Kotthoff, L. (eds.). CEUR-WS.org, p. 55-66 (CEUR Workshop Proceedings; vol. 1455).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    10 Citations (Scopus)
    2 Downloads (Pure)
  • Case study on bagging stable classifiers for data streams

    van Rijn, J. N., Holmes, G., Pfahringer, B. & Vanschoren, J., 2015, BENELEARN 2015. 6 p. (Computing and Mathematical Sciences Papers, University of Waikato.).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

  • Decreasing the false alarm rate of arrhythmias in intensive care using a machine learning approach

    Eerikäinen, L. M., Vanschoren, J., Rooijakkers, M. J., Vullings, R. & Aarts, R. M., 2015, 2015 Computing in Cardiology Conference (CinC), 6-9 September 2015, Nice, France. Piscataway: Institute of Electrical and Electronics Engineers, p. 293-296

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    42 Citations (Scopus)
    6 Downloads (Pure)
  • Effectiveness of random search in SVM hyper-parameter tuning

    Gomes Mantovani, R., Rossi, A. L. D., Vanschoren, J., Bischl, B. & de Carvalho, A. C. P. L. F., 2015, Neural Networks (IJCNN), 2015 International Joint Conference on. Institute of Electrical and Electronics Engineers, p. 1-8 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    116 Citations (Scopus)
  • Fast algorithm selection using learning curves

    Rijn, van, J. N., Abdulrahman, S. M., Brazdil, P. & Vanschoren, J., 2015, Advances in Intelligent Data Analysis XIV (14th International Symposium, IDA 2015, Saint Etienne, France, October 22-24, 2015). Fromont, E., De Bie, T. & Leeuwen, van, M. (eds.). Dordrecht: Springer, p. 298-309 (Lecture Notes in Computer Science; vol. 9385).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    52 Citations (Scopus)
    1 Downloads (Pure)
  • Meta-learning recommendation of default hyper-parameter values for SVMs in classification tasks

    Gomes Mantovani, R., Rossi, A. L. D., Vanschoren, J. & Carvalho, A. C. P. L. F., 2015, International Workshop on Meta-Learning and Algorithm Selection (MetaSel 2015, Porto, Portugal September 7, 2015; co-located with ECMLPKDD 2015). Vanschoren, J., Brazdil, P., Giraud-Carrier, C. & Kotthoff, L. (eds.). CEUR-WS.org, p. 80-92 (CEUR Workshop Proceedings; vol. 1455).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    9 Citations (Scopus)
  • OpenML : a networked science platform for machine learning

    Vanschoren, J., van Rijn, J. N., Bischl, B., Casalicchio, G., Lang, M. & Feurer, M., 2015, 2015 ICML Workshop on Machine Learning Open Source Software (MLOSS 2015), 10 Juli 2015, Lille, France. p. 1-3

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    314 Downloads (Pure)
  • Sharing RapidMiner workflows and experiments with OpenML

    Rijn, van, J. N. & Vanschoren, J., 2015, International Workshop on Meta-Learning and Algorithm Selection (MetaSel 2015, Porto, Portugal September 7, 2015; co-located with ECMLPKDD 2015). Vanschoren, J., Brazdil, P., Giraud-Carrier, C. & Kotthoff, L. (eds.). CEUR-WS.org, p. 93-103 (CEUR Workshop Proceedings; vol. 1455).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    3 Citations (Scopus)
    1 Downloads (Pure)
  • Taking machine learning research online with OpenML.

    Vanschoren, J., van Rijn, J. N. & Bischl, B., 2015, Proceedings of the 4th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. p. 1-4 4 p. (JMLR Workshop and Conference Proceedings; vol. 41).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    70 Downloads (Pure)
  • To tune or not to tune : recommending when to adjust SVM hyper-parameters via Meta-learning

    Gomes Mantovani, R., Rossi, A. L. D., Vanschoren, J., Bischl, B. & Carvalho, A. C. P. L. F., 2015, 2015 International Joint Conference on Neural Networks (IJCNN), 12-17 July 2015, Killarney, Ireland . Piscataway: Institute of Electrical and Electronics Engineers, p. 1-8 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    62 Citations (Scopus)
  • Towards a collaborative platform for advanced meta-learning in healthcare predictive analytics

    Vukicevic, M., Radovanovic, S., Vanschoren, J., Napolitano, G. & Delibasic, B., 2015, International Workshop on Meta-Learning and Algorithm Selection (MetaSel 2015, Porto, Portugal September 7, 2015; co-located with ECMLPKDD 2015). Vanschoren, J., Brazdil, P., Giraud-Carrier, C. & Kotthoff, L. (eds.). CEUR-WS.org, p. 112-114 (CEUR Workshop Proceedings; vol. 1455).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    3 Downloads (Pure)
  • Towards a data science collaboratory

    Vanschoren, J., Bischl, B., Hutter, F., Sebag, M., Kegl, B., Schmid, M., Napolitano, G., Wolstencroft, K., Williams, A. R. & Lawrence, N., 2015, Advances in Intelligent Data Analysis XIV: 14th International Symposium, IDA 2015, Saint Etienne. France, October 22 -24, 2015. Proceedings. Fromont, E., de Bie, T. & van Leeuwen, M. (eds.). Cham: Springer, p. XIX-XXI 3 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    File
    1 Citation (Scopus)
    181 Downloads (Pure)
  • Who is more positive in private? : analyzing sentiment differences across privacy levels and demographic factors in Facebook chats and posts

    Gao, B., Berendt, B. & Vanschoren, J., 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 25-28 August 2015, Paris, France. Piscataway: Institute of Electrical and Electronics Engineers, p. 605-610 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    10 Citations (Scopus)
  • 2014

    Algorithm selection on data streams

    Rijn, van, J. R., Holmes, G., Pfahringer, B. & Vanschoren, J., 2014, Discovery Science (17th International Conference, DS 2014, Bled, Slovenia, October 8-10, 2014. Proceedings). Dzeroski, S., Panov, P., Kocev, D. & Todorovski, L. (eds.). Heidelberg: Springer, p. 325-336 (Lecture Notes in Computer Science; vol. 8777).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    41 Citations (Scopus)
  • Towards Meta-learning over Data Streams

    van Rijn, J. N., Holmes, G., Pfahringer, B. & Vanschoren, J., 2014, Meta-Learning and Algorithm Selection (MetaSel 2014, Prague, Czech Republic, August 19, 2014; co-located with ECAI 2014). Vanschoren, J., Soares, C. & Kotthoff, L. (eds.). CEUR-WS.org, p. 37-38 (CEUR Workshop Proceedings; vol. 1201).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    1 Citation (Scopus)
  • 2013

    A RapidMiner extension for open machine learning

    Van Rijn, J. N., Umaashankar, V., Fischer, S., Bischl, B., Torgo, L., Gao, B., Winter, P., Wiswedel, B., Berthold, M. R. & Vanschoren, J., 2013, RapidMiner Community Meeting and Conference. p. 59-70 12 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
  • Modeling sensor dependencies between multiple sensor types

    Miao, S., Vespier, U., Vanschoren, J., Knobbe, A. & Cachucho, R., 2013, Proceedings of BeneLearn.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
  • OpenML: A collaborative science platform

    van Rijn, J. N., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Winter, P., Wiswedel, B., Berthold, M. R. & Vanschoren, J., 2013, Joint European Conference on Machine Learning and Knowledge Discovery in Databases. p. 645-649 5 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    65 Citations (Scopus)
  • 2012

    MDL-based analysis of time series at multiple time-scales

    Vespier, U., Knobbe, A., Nijssen, S. & Vanschoren, J., 2012, Joint European Conference on Machine Learning and Knowledge Discovery in Databases. p. 371-386 16 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
    13 Citations (Scopus)
  • MDL-based identification of relevant temporal scales in time series

    Vespier, U., Knobbe, A., Nijssen, S. & Vanschoren, J., 2012, Fifth workshop on Information Theoretic Methods in Science and Engineering (WITMSE-2012), 27-30 August 2012, Amsterdam, The Netherlands . p. 64 1 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    Open Access
  • Scientific workflow management with ADAMS

    Reutemann, P. & Vanschoren, J., 2012, Joint European Conference on Machine Learning and Knowledge Discovery in Databases. p. 833-837 5 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    10 Citations (Scopus)
  • Selecting classification algorithms with active testing

    Leite, R., Brazdil, P. & Vanschoren, J., 2012, International Workshop on Machine Learning and Data Mining in Pattern Recognition. p. 117-131 15 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    72 Citations (Scopus)