Organization profile

Introduction / mission

The rapid evolution of the built environment involves a growing complexity of structural design activities, including aspects of material-efficiency and sustainability, durability, retrofitting of buildings, structural safety and reliability, and structural optimization. The research program Structural Engineering and Design (SED) has included these aspects in its research portfolio through the definition of corresponding research directions for its chairs, which are Innovative Structural Design (chair group ISD), Applied Mechanics (chair group AM), Steel Structures, Aluminium Structures (together forming chair group SAS), Concrete Structures, and Sustainment of Concrete Structures (together chair group CMS).

Highlighted phrase

Forefront research on the mechanical behaviour, optimisation, and design of structural systems, elements, and materials, ensures a safe, functional, aesthetic and sustainable built environment.

Organisational profile

SED contributes to the forefront of challenging technological developments. For the chair of Innovative Structural Design this applies to its research on lightweight, adaptive, or otherwise innovative structures. Examples are the computational parametric modelling and form-finding of textile structures and the design and actual construction of reinforced ice structures. In addition, the work on bio-based structural materials is worth mentioning. Further on the activities include the evaluation of the potential to transform existing buildings towards a circular economy. The chair of Applied Mechanics has a strong international reputation in the modelling of failure (plasticity, fracture, damage, phase transformations) and deformation of advanced engineering materials. The coupled modelling of the mechanical behaviour of materials with other physical processes finds relevant applications within collaborative PhD research projects on the chemical degradation of concrete sewer systems, the damage development of historical museum objects under varying climate conditions, the optimization and durability of wind turbines, and the thermal resistance of steel structures. In addition, multi-disciplinary optimization of buildings is researched via a combination of conceptual design process simulation and computing science optimisation. The research in the chairs Steel Structures and Aluminium Structures encompasses the structural behaviour and fatigue of building components and structures made from steel, aluminium, and glass. In the chair of Concrete Structures, one of the highlights is the advanced research in 3D-printing of concrete structures, besides research on the sustainable concrete and masonry structures. The research within the program has led to a substantial number of articles in high-quality scientific journals and refereed conference proceedings. The impact of the used journals is 1.41 times higher than the world average in the field. Also more than 50% of the publications have been co-authored with members from other organisations.

An important goal of the program is the valorisation of its research results towards relevant engineering applications, thereby contributing to the practical understanding of structures, structural design processes, and building materials. In addition, high-quality laboratory research performed with external funding provides applicable knowledge to the building industry and engineering consultancy firms, acting as a cradle for novel solutions to complex design problems. Of strong societal value is also the participation of staff members in the development of the European building codes, the Eurocodes (EC's). Additionally, SED participates in the Research School Integral Design of Structures, the Graduate School on Engineering Mechanics, and the Eindhoven Multiscale Institute. The program is also involved in the 3TU.Bouw Centre of Excellence for the Built Environment.


Dive into the research topics where Structural Engineering and Design is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.


Recent external collaboration on country level. Dive into details by clicking on the dots or