Research Output per year
Organization profile
Introduction / mission
In this research area we focus on a variety of frontends where low power consumption and energy efficiency plays an important role, in particular we focus on biomedical applications. Both frontends for wireless communication and frontends for sensor interfacing are considered.
Organisational profile
In today’s world, wireless communication in small, battery-powered devices is omnipresent. For instance: smart phones, tablets and watches with a plurality of wireless interfaces; wireless networks around the body; and smart-dust sensor nodes. Due to requirements in terms of small physical size, long battery lifetime, limited body-tissue heating, and increasing data rates, there is a continuous demand for improving energy efficiency.
We are addressing these requirements in various ways, for instance:
• Smartness: by using adaptive non-linear components, self-interference of multi-standard radios can be greatly suppressed, leading to relaxed circuit requirements and better system performance.
• Wake-up radios: by using an extremely low-power wake-up radio next to a main radio, power can be saved during inactivity by suspending the power-hungry main radio.
• Beam-steering phased arrays: by means of an array of antennas, the directivity of wireless communication can be tuned perfectly from transmitter to receiver, thus avoiding power loss in other directions and improving spatial selectivity. We are developing circuits to implement these beam-steering systems.
• Optical-wireless communication systems: while wireless communication is often performed electromagnetically, optical solutions are becoming interesting to provide extremely high data rates. We thus develop systems that combine both forms of communication.
• Monolithic wireless sensors with energy harvesting: smart-dust applications require ~1mm3-size autonomous devices. This is only feasible if the whole system (including the sensor, the wireless communication with antenna, but also the energy harvesting & storage components) can be integrated on a single chip without external components. To achieve this, we develop system concepts and actual circuits that can implement all these functionalities with a very low power consumption.
Besides looking at wireless frontends, this research field of the IC group also considers sensor front-ends. Again energy-efficiency plays a prominent role. Further, we focus on biomedical applications in particular. Apart from just circuit design, here we spend also effort to develop complete systems, demonstrators, and to acquire know-how of medical applications and signals. A few examples within this domain are:
• Power-efficient amplifiers and ADCs for fetal monitoring: fetal monitoring is extremely difficult due to the small signals of interest combined with large interferences. We are developing smart, reconfigurable circuits that can capture those signals reliably in a power-optimized way. We do this by combining reconfigurable circuits with signal-processing algorithms.
• Interfaces for deep-brain-stimulation: in order to develop circuits for brain-stimulation electrodes, models are developed and experimentally verified. This knowhow is used to optimally design amplifiers and stimulation electronics.
• Wearable wireless sensor systems for health monitoring: tele-health applications require continuous monitoring of vital information, such as blood pressure and ECG. We develop low-power circuits for signal monitoring and wireless communication, as well as system demonstrators that can be used in real-life experiments.
Fingerprint Dive into the research topics where Resource Efficient Electronics is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.
Profiles

Pieter J.A. Harpe
- Department of Electrical Engineering, Integrated Circuits - Associate Professor
- Department of Electrical Engineering, Center for Care & Cure Technology Eindhoven
- Department of Electrical Engineering, Resource Efficient Electronics
Person: UHD : Associate Professor
Research Output 2003 2019
9.3 A680 μw burst-chirp UWB radar transceiver for vital signs and occupancy sensing up to 15m distance
Liu, Y. H., Sheelavant, S., Mercuri, M., Mateman, P., Dijkhuis, J., Zomagboguelou, W., Breeschoten, A., Traferro, S., Zhan, Y., Torf, T., Bachmann, C., Harpe, P. & Babaie, M., 6 Mar 2019, 2019 IEEE International Solid-State Circuits Conference, ISSCC 2019. Piscataway: Institute of Electrical and Electronics Engineers, p. 166-168 3 p. 8662536Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Academic › peer-review
A 0.0013mm2 10b 10MS/s SAR ADC with a 0.0048mm2 42dB-rejection passive FIR filter
Harpe, P. J. A., 1 Apr 2019, 2019 IEEE Custom Integrated Circuits Conference, CICC 2019. Piscataway: Institute of Electrical and Electronics Engineers, 4 p. 8780319Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Academic › peer-review
A 0.34-571nW all-dynamic versatile sensor interface for temperature, capacitance, and resistance sensing
Xin, H., Andraud, M., Baltus, P. G. M., Cantatore, E. & Harpe, P. J. A., 18 Nov 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC). Piscataway: Institute of Electrical and Electronics Engineers, p. 161-164 4 p.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Academic › peer-review
Activities 2016 2016
- 7 Contributed talk
SAR ADCs for IoT: Basics and Innovations
Pieter Harpe (Speaker)Activity: Talk or presentation types › Contributed talk › Scientific
Ultra Low-Power Analog Front-End Design
Pieter Harpe (Speaker)Activity: Talk or presentation types › Contributed talk › Scientific
Power-Efficient, High-Resolution and Reconfigurable SAR ADCs
Pieter Harpe (Speaker)Activity: Talk or presentation types › Contributed talk › Scientific
Student theses
Miniaturised low power IR optical sensor system for high accuracy and high speed identification of linear displacement
Author: Siddiqui, A., 29 Oct 2018Supervisor: Stuijk, S. (Supervisor 1), Harpe, P. (Supervisor 2), Huisken, J. (Supervisor 2) & Veltman, E. (External person) (External coach)
Student thesis: Master