• AddressShow on map

    Het Kranenveld 14, Helix (STO 1.46)

    Eindhoven

    Netherlands

  • Postal addressShow on map

    P.O. Box 513, Department of Chemical Engineering and Chemistry

    5600 MB Eindhoven

    Netherlands

Organization profile

Introduction / mission

Our research revolves around macromolecular chemistry and polymer materials, including the development of new polymerization strategies and the creation of novel polymeric structures. We want to advance the technological use of novel macromolecular materials to arrive at innovative, sustainable, functional polymeric materials and their industrially relevant application.

Highlighted phrase

We focus on performance in materials properties and circularity

Organisational profile

At the new TU/e group of Polymer Performance Materials, started in 2020, we aim at developing new fundamental concepts in macromolecular chemistry and polymer materials. Guided by structure-property relationships, we improve existing polymeric materials and design novel polymers, in both cases focusing on performance with respect to materials properties as well as circularity. This includes the development of novel synthetic methodology to allow the conversion of existing and novel polymers into recyclable materials. We combine polymer synthesis with detailed molecular, morphological and property characterization, to expand our knowledge base of fundamental polymer science and to advance new technologies. Of particular interest are new polymerization strategies for the creation of novel polymers for industrially relevant high-performance applications. We maintain a truly interdisciplinary approach and encourage collaboration between academia and industry. At Polymer Performance Materials, we strive to teach our students the essence of academic research. We hope to inspire them to excel in an independent scientific research career, with a mission to provide a lasting contribution to society.

Research at Polymer Performance Materials is organized in the following themes:

1. Novel high-performance polyurethanes

Polyurethane (PU) is one of the most versatile polymers, playing a vital role in many industries. Research is aimed at improving the performance of existing polyurethanes and developing new functional polyurethanes containing well-defined high-performance structural motifs and hydrogen-bonding groups. The self-assembly and morphology of the novel polyurethanes will be studied and their properties fully characterized.

2. Dynamic and self-healing polymers

New concepts for autonomous self-healing will be initiated, e.g. based on block-copolymers or supramolecular polymers consisting of high Tg domains (which provide good mechanical properties) and low Tg domains featuring supramolecular hydrogen bonding interactions (responsible for the healing behaviour). Research in this area will focus on understanding the scratch healing mechanism (relevant for real applications) and functionality obtained by sophisticated use of specific supramolecular interactions, in particular multiple hydrogen bonding.

3. Circular polymer materials

In polymeric materials, a fundamental transition is required towards continuous re-use of non-fossil-based polymeric products. We will focus on existing polymers as well as designing novel polymeric structures more amenable to recycling, including smart monomers that can switch between polymerized and depolymerized states, using energy-efficient processes. In addition, we will develop repurposing processes in which polymer wastes are converted to building blocks for new value-added polymeric materials.

4. High performance organic aerogels

Aerogels are low density solids with high open porosity and surface area, exceptionally low thermal conductivities, and high acoustic attenuation. They are typically prepared from suitable wet gels by turning the pore‐filling solvent into a supercritical fluid that is vented off. In this project we aim to create the next generation of organic aerogels with outstanding mechanical, chemical and thermal stability, and flame retardancy by developing novel aerogels based on high performance structural motifs. They can be envisioned as lightweight super‐insulating materials for aerospace applications, as well as for more down-to-earth uses in construction and transportation. Additionally, they will be used for energy storage and in catalytic applications.

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. Our work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy

Fingerprint

Dive into the research topics where Polymer Performance Materials is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

Network

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or