• De Zaale, Metaforum

    5600 MB Eindhoven


  • Netherlands

Organization profile

Introduction / mission

The Non-Equilibrium Soft Matter group of Liesbeth Janssen focuses on the behavior of materials that are inherently out of thermodynamic equilibrium, ranging from glasses and gels to active and bio-mimetic matter. We use a combination of theory, analytical modeling, and computer simulations to study the structural, dynamical, and mechanical properties of such materials. Our group is embedded within the Theory of Polymers and Soft Matter (TPS) cluster at the Department of Applied Physics at Eindhoven University of Technology.

Organisational profile

The Non-Equilibrium Soft Matter group employs a combination of theory, analytical modeling, and computer simulations to study the structural, dynamical, and mechanical properties of materials that are inherently out of equilibrium.

Glass formation 

Virtually all liquids can undergo a transition toward a glassy (i.e. amorphous solid) phase when cooled to below their melting temperature. Remarkably, while this phenomenon has been experimentally known for centuries and is exploited in a wealth of applications, understanding the physics behind the glass transition still stands out as “the deepest and most interesting unsolved problem in solid state theory”. We work on the development of a novel microscopic theory that can accurately predict the complex dynamics of glass-forming materials on a strictly first-principles basis, providing a promising new framework to elucidate various poorly understood glassy phenomena.

Active matter 

Active materials are composed of particles that can convert energy into autonomous motion. This renders them intrinsically far from equilibrium, resulting in rich dynamical and self-organizing behavior that defies the laws of conventional equilibrium statistical mechanics. Examples in nature are abundant and occur on all length scales, ranging from the cellular cytoskeleton to macroscopic bird flocking. Artificially created active particles have also recently become available, offering potential applications in bio-sensing and targeted drug delivery. We employ theory and particle-resolved computer simulations to study the emergent behavior of such active materials. In current research we explore the role of geometric and topological constraints, the emergence of mechanical stability, and aging and rejuvenation behavior in active matter.

Smart and responsive materials

The living cell represents a magnificent example of responsive, smart, and programmable matter, combining the ability to sense changes in its environment with the means to adapt in a quick and effective manner. We seek to study and ultimately harness the physical principles underlying this responsive behavior to design and control novel bio-inspired and smart materials. We are mainly interested in systems that exploit properties of both glassy and active matter, such as active disordered (bio-)networks, actively doped glasses, and vitrimers—a new class of responsive polymers.

Previously, I also worked in the field of molecular quantum physics, focusing on quantum-mechanical first-principles treatments of molecular photodissociation, scattering processes in an external field, and ultracold controlled chemistry.



Fingerprint Dive into the research topics where Non-Equilibrium Soft Matter is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

  • Network Recent external collaboration on country level. Dive into details by clicking on the dots.

    Research Output

    Aging and rejuvenation of active matter under topological constraints

    Janssen, L. M. C., Kaiser, A. & Löwen, H. W., 18 Jul 2017, In : Scientific Reports. 7, 1, 13 p., 5667.

    Research output: Contribution to journalArticleAcademicpeer-review

    Open Access
  • 21 Citations (Scopus)
    102 Downloads (Pure)


    NWO START-UP Award : Understanding asthma by studying glass

    Janssen, Liesbeth M.C. (Recipient), 2018

    Prize: NWOSTART-UPScientific

  • Student theses

    Collective cell dynamics in cancer metastasis

    Author: Debets, V. E., 2019

    Supervisor: Storm, C. (. (Supervisor 1), Janssen, L. M. (Supervisor 2) & Saric, A. (External person) (External coach)

    Student thesis: Master


    Effects of attractive forces on the structure and dynamics of supercooled liquids

    Author: van der Heijden, B., 2019

    Supervisor: Janssen, L. M. (Supervisor 1) & Ciarella, S. (Supervisor 2)

    Student thesis: Bachelor


    Mathematical analysis of generalized mode-coupling theory and numerical exploration of super-strong glass formation

    Author: Biezemans, R. A., 9 Jul 2018

    Supervisor: Baumeier, B. (Supervisor 1), Iapichino, L. (Supervisor 2), Caylak, O. (Supervisor 2), Janssen, L. (Supervisor 2) & Ciarella, S. (Supervisor 2)

    Student thesis: Bachelor