Emerging Technologies Lab

  • AddressShow on map

    Groene Loper 19, Flux 7.097

    5612 AP Eindhoven

    Netherlands

  • Postal addressShow on map

    P.O. Box 513, Department of Electical Engineering

    5600 MB Eindhoven

    Netherlands

Organisation profile

Introduction / mission

The mission of the research on emerging technologies and applications is to design circuits and systems that exploit novel device technologies, in order to expand the application domain of electronics beyond what is conventionally possible with silicon integrated circuits (ICs) alone.

Organisation profile

Recently, silicon electronics has been integrated with other technologies (e.g. power devices, images sensors, MEMs) to enable new applications in the domains of physical and chemical sensing, healthcare, automotive, lighting, etc. The name ‘More than Moore’ has been used for these developments. The most long-term research in More than Moore’s electronics strives to integrate silicon with emerging non-silicon technologies like large-area, flexible, conformable, printed and nano-material based electronics, as well as integrated photonics, to enable completely new applications.

The domain of emerging technologies is extremely broad, and research in the use of emerging technologies for electronic application needs focus. The IC group has decided to concentrate the research on circuit design for emerging technologies in two research programs:

  1. Flexible and printed electronics. Integrated silicon electronics consists of in tiny and rigid ‘chips’. For this reason it cannot serve all purposes. Large-area electronics has been invented for applications like flat-panel displays, where transistors must cover large surfaces. Interestingly, some technologies for large area electronics keep the processing temperature always below 200°C, enabling the use of cheap plastic films as substrates and making possible flexible and stretchable large-area circuits. Further research is focusing on the use of printing methods to fabricate this ‘flexible electronics’, achieving higher-speed production and even lower costs. Flexible and printed large-area electronics, for its characteristics vastly different from silicon ICs, is an ideal candidate for our work towards enabling new applications of electronics. The characteristics of large-area, flexibility and low cost can be conveniently combined for different purposes, e.g. large area sensing surfaces, biopotential sensors, and sensors integrated in packaging materials.
  2. Integration of electronics and photonics.  Another set of emerging technologies which appears extremely promising from the circuit and system design perspective is the integration of photonic and electronic ICs. TU/e is a front runner in photonic integration, and our ambition is to create innovative systems based on photonic and silicon ICs for revolutionary applications in the domains of sensing (e.g. Lidar, metrology, fiber optic sensing) and ultra-fast communication (in cooperation with the PhI group and the RF lab of the IC group).

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. Our work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 7 - Affordable and Clean Energy

Fingerprint

Dive into the research topics where Emerging Technologies Lab is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or