Coherence and Quantum Technology

  • AddressShow on map

    Groene Loper 21, Building number 7200

    5612 AP Eindhoven

    Netherlands

  • Postal addressShow on map

    P.O. Box 513, Qubit building 2.003

    5600 MB Eindhoven

    Netherlands

Organisation profile

Introduction / mission

Our central theme is dilute matter at high phase space density. Our goal is exploiting quantum coherence. Our work is both theoretical and experimental, our tools include high power lasers and compact particle accelerators, our objectives are fundamental as well as applied.

Highlighted phrase

The Coherence and Quantum Technology group exploits its unique combination of cold atom, plasma and beam physics to achieve new understanding and novel applications

Organisation profile

The research of the Coherence and Quantum Technology group focuses on collective effects in dilute, strongly interacting systems of high phase-space density: ultra-cold atoms, quantum gases and plasmas, and high-brightness electron, ion and atom beams. These strongly interacting systems have an extremely large variety in energy and length scales, ranging from high-Tc superconductors to the dense interiors of neutron stars. Understanding them is at the frontier of modern quantum physics.

The Coherence and Quantum Technology group has a special position in the physics community thanks to its unique combination of atomic physics, plasma and accelerator physics and technology. Our approach includes both experiment and theory, for a balanced mixture of 50 % fundamental and 50 % applied research. Thanks to our long history of close collaboration between theorists and experimentalists, we can develop unifying concepts and translate them into new sources of charged particles and X-rays for scientific, industrial and medical applications.

An essential area of interest for us is light-matter interaction. To reach the special experimental conditions needed for our research, atomic gases and charged particle beams are manipulated and controlled by coherent light-matter interaction, using both ultra-narrowband continuous-wave lasers and mode-locked femtosecond lasers, enabling a new class of experiments that are both ultracold and ultrafast.

Present projects include development of (sub)nm focused ion beam (FIB) technology using laser-cooled ion sources, with Thermo Fisher Scientific; a program on ultracold source development and ultrafast beam manipulation for femtosecond electron microscopy & crystallography, also supported by Thermo Fisher; ultra-bright, high-current electron source development for a new generation of high-brilliance X-ray sources, supported by EU Interreg, ASML and CERN; development of a quantum simulator based on Rydberg atom lattices; development of quantum theory of few-body systems to describe fundamental phenomena in ultracold atomic gases.

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. Our work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 7 - Affordable and Clean Energy

Fingerprint

Dive into the research topics where Coherence and Quantum Technology is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or