• P.O. Box 513

    5600 MB


Organization profile

Introduction / mission

The group's mission is to be among the world's top academic research groups in its field and to be leading in the development of novel technologies for new, highly efficient, inherently safe, and robust (micro)structured multiphase processing systems, which show the best productivity by a dedicated design of all relevant dimensions and optimum choice of dedicated operational procedures.

Highlighted phrase

We develop novel reactor concepts and integrated process options, combining reactions with separations or multiple reactions in a single device.

Organisational profile

The research in the Chemical Reactor Engineering group is concentrated on three main topic area’s: “high-gravity high-shear multiphase reactors”, “microstructured reactors and devices” and “catalysis engineering”.

The research area of "High-gravity High-shear Multiphase Reactors" focuses on the development of catalytic and non-catalytic multiphase reactor systems that use rotation to create high gravity and high shear conditions. These conditions lead to excellent interphase mass transfer, excellent intraphase mixing, and excellent fluid-to-wall heat transfer. Applications are especially in (exothermic) fast reactions that are interphase mass transfer limited, are mixing limited, or are heat transfer limited. Additionally, in a high gravity field two phases with different density can be contacted counter­currently, which opens up possibilities for separation processes. Thus, distillation (gas-liquid), extraction (liquid-liquid), and crystallization (liquid-solid) become feasible. The two main reactor concepts that research focuses on are the ‘spinning disc reactor’ and the ‘rotating packed bed reactor’.

The high-gravity high-shear conditions enable the use of extremely compact equipment for chemical process industry, easily a factor hundred smaller than conventional equipment. The much smaller equipment size allows for the safe use of high temperatures and high pressures, enlarging the economic process window. An additional benefit of the small equipment size is that more expensive construction material can be used. Furthermore, individual parts can be coated with plastics (teflon), diamant, corrosion resistive metals (gold, platina, tantalum) etc., with only a minor increase in equipment costs. Even clean room technology can be used to etch specific microstructures in the contact surfaces to enhance the performance. In 2012 the spin-off company Flowid was launched from within the group to commercialize the spinning disc reactor technology developed within this research line.

The research area of "Microstructured Reactors and Devices" focuses on the development of microchemical systems that provide intricate geometries with characteristic length scales of 10 µm to 50 mm for optimum mixing, mass and heat transfer, (catalytic) reaction, and product separation. The challenge is to explore the potential benefits of these miniaturized chemical systems in terms of e.g. productivity, selectivity, energy efficiency, new reaction pathways, safety, and environmental benign manufacturing. A particular innovative aspect is to take benefit of microfabrication technologies for integrating sensors and actuators for process monitoring and control. Areas of application include fuel processing and hydrogen production, high-throughput catalyst screening, and chemicals synthesis ("process on a chip"). Research focuses on scale-up of microreactors to industrial scale, multifunctional reactors (combining multiple reactions or reaction with separation), and the preparation of catalysts in microreactors.

The research area of “Catalysis Engineering” is bringing together the fields of Reactor Engineering with Catalysis, one of the other focus points in the department. A state of the art catalyst requires a state of the art reactor to function optimally and vice versa. Understanding both the catalyst and the processes occurring in the chemical reactor, it will be possible to develop the most efficient system. Especially in a reaction system in which not only the desired reaction occurs, but also competing reactions, causing a loss in selectivity or a deactivation of the catalyst, understanding the entire system is crucial. An optimal design of the catalyst-reactor system will only be possible by optimizing all the relevant length scales, from the site of the catalyst, to the mass transfer length in the catalyst, to the catalyst particle size and shape (determining the external mass transfer), and the macromixing behavior in the reactor (determining the local environment of the catalyst). Within this research area, we convert the reactor concepts of rotating reactors and microreactors from the other research lines into catalytic reactors. We perform kinetic and mass transfer measurements on these catalytic systems to improve the understanding of both the catalyst and reactor to improve them further and to be able to model their performance.

Running projects

  • Open micro-structured random packing in GLS reactors for FT catalyst and reactor development
  • High gravity high shear for intensified chemicals production
  • High pressure, temperature and concentration intensified biobased conversion processes

Network Recent external collaboration on country level. Dive into details by clicking on the dots.


Photo of Madan Bindraban

Madan Bindraban

Person: OBP : Supportive and management staff


Research Output 1969 2019

Deployment of membrane for propylene recovery

Gonzalez-Gonzalez de Castro, G., 1 Oct 2019, (Accepted/In press) Eindhoven: Technische Universiteit Eindhoven.

Research output: ThesisPd Eng ThesisAcademic

Direct epoxidation of propene on silylated Au-Ti catalysts: a study on silylation procedures and the effect on propane formation

Kanungo, S., Keshri, K. S., Hensen, E. J. M., Chowdhury, B. & Neira d'Angelo, M. F., Jun 2019, Proceedings of the 26th North American Catalysis Society Meeting (NAM26). 1 p.

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

propylene oxide
5 Citations (Scopus)

Direct synthesis of H2O2 in AuPd coated micro channels: An in-situ X-Ray absorption spectroscopic study

Kanungo, S., van Haandel, L., Hensen, E. J. M., Schouten, J. C. & Neira d'Angelo, M. F., 1 Feb 2019, In : Journal of Catalysis. 370, p. 200-209 10 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
X ray absorption
x rays


Programmable logic controllers
Anodic oxidation


Prof. dr. ir. Jaap Schouten

Jaap Schouten (Recipient), 2018

Recognition: NWOStevinScientific


Smart Structured Rotating Reactors

Jaap Schouten (Recipient), 2008

Recognition: ERCAdvancedScientific

Intelligent materials
Chemical plants
Multiphase flow
Rotating disks

Spinning Disc Reaction Technology for Cost- and Resource Effective Chemicals Production

Jaap Schouten (Recipient), 2011

Recognition: ERCProof of conceptScientific

Batch reactors
Chemical industry
Drug products

Activities 1995 2012

  • 26 Contributed talk
  • 9 Editorial activity
  • 1 Invited talk

Zing Microwave & Flow Chemistry Conference 2012, Lanzarote

Volker Hessel (Speaker)
1 Mar 2012

Activity: Talk or presentation typesContributed talkScientific

564e Bijeenkomst Chemische Kring Eindhoven

Frans Visscher (Speaker)
24 Apr 2011

Activity: Talk or presentation typesContributed talkScientific

Chemical Engineering & Technology (Journal)

Volker Hessel (Editorial board member)

Activity: Publication peer-review and editorial work typesEditorial activityScientific

Student theses

3D scalar field simulations for Micro Mixing applications in a cylindrical geometry: implementation and verification

Author: van Kouwen, R., 28 Feb 2018

Supervisor: van der Schaaf, J. (Supervisor 1), van Eeten, K. (Supervisor 2), Aguirre, A. (Supervisor 2), Peters, E. (Supervisor 2) & Buist, K. (Supervisor 2)

Student thesis: Master


A detailed numerical study on the micro mixing behaviour of turbulent flow fields at low Schmidt numbers: implementation and validation

Author: Hop, V., 29 May 2019

Supervisor: van der Schaaf, J. (Supervisor 1), van Kouwen, E. (Supervisor 2), Aguirre, A. (Supervisor 2) & Roghair, I. (Supervisor 2)

Student thesis: Master


Developing a solar driven mini-plant

Author: Huisman, R., 28 Aug 2019

Supervisor: Cambié, D. (Supervisor 1), Kuijpers, K. (Supervisor 2), Noël, T. (Supervisor 2), van Eeten, K. (Supervisor 2) & Debije, M. (Supervisor 2)

Student thesis: Master