• Department of Biomedical Engineering Eindhoven University of Technology, P.O. Box 513

    5600 MB Eindhoven

    Netherlands

  • Eindhoven University of Technology, Building 15, Gemini-South (room 4.115) Groene Loper

    5612 AZ Eindhoven

    Netherlands

Organization profile

Introduction / mission

The mission of the group is to educate students in the biomechanics of soft tissues with emphasis on both computational as well as experimental methods. This includes development of constitutive models for solids and mixtures, including growth, adaptation and damage development. Experimental techniques involve in-vivo and ex-vivo mechanical testing at multiple scales, microscopic techniques and inverse methods.

Highlighted phrase

understand and predict the behaviour of biological structures and organs

Organisational profile

Biomechanics has always played an important role in biomedical engineering and forms an integral part of a multi-disciplinary approach to clinical and biological problems. Biomechanical modelling became an essential tool to understand and predict the behaviour of biological structures and organs, from the molecular scale up to the full body scale. This involved the solution of solid/fluid interaction problems and the transport of small and large molecules in tissues. A lot of effort was put in dynamical time dependent variations, which are so specific for biological tissues like growth, adaptation and degradation.

The research comprises two related research lines and is a good example of the trend in research methodology that is described above.  The first line is aimed at the prevention of Pressure Ulcers (PUs) with three major objectives: 1. Understanding the mechanisms that cause PUs 2. Develop a method to identify patients at risk. 3. Develop a method for early detection of ulcers that start to develop in deep tissue layers near the bony prominences. The second research line involves biomechanics of skin, strongly related to conditions associated with PUs (studies on skin irritation and biomarkers), but also focused on other application areas (interaction of skin with personal care devices and trans-epidermal drug delivery). The above-mentioned applications required detailed knowledge of mechanical properties like stiffness and strength as well as transport properties  (diffusion coefficients, permeability) at a very local level in the top layers of the skin.

Fingerprint Dive into the research topics where Biomechanics of Soft Tissues is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

Tissue Chemical Compounds
Wounds and Injuries Medicine & Life Sciences
Elasticity Imaging Techniques Medicine & Life Sciences
Stress Fibers Medicine & Life Sciences
Muscle Chemical Compounds
Magnetic resonance imaging Chemical Compounds
Muscles Medicine & Life Sciences
Spinal Cord Injuries Medicine & Life Sciences

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2017 2019

  • 17 Article
  • 1 Phd Thesis 1 (Research TU/e / Graduation TU/e)
15 Downloads (Pure)

Magnetic resonance elastography of skeletal muscle deep tissue injury

Nelissen, J. L., Sinkus, R., Nicolay, K., Nederveen, A. J., Oomens, C. W. J. & Strijkers, G. J., Jun 2019, In : NMR in Biomedicine. 32, 6, 12 p., e4087.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
File
Elasticity Imaging Techniques
Magnetic resonance
Muscle
Skeletal Muscle
Elastic moduli

Mechanical and biochemical response of human skin to diverse loading conditions

Soetens, J. F. J., 18 Jun 2019, Eindhoven: Technische Universiteit Eindhoven. 112 p.

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)

Open Access
File
Skin
2 Citations (Scopus)
17 Downloads (Pure)

Myoglobin and troponin concentrations are increased in early stage deep tissue injury

Traa, W. A., Strijkers, G. J., Bader, D. L. & Oomens, C. W. J., 1 Apr 2019, In : Journal of the Mechanical Behavior of Biomedical Materials. 92, p. 50-57 8 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
File
Troponin
Myoglobin
Blood
Tissue
Biomarkers

Student theses

Investigation of the cause of heel ulcers for bedridden patients: a finite element study

Author: van Zwam, W., 29 Aug 2019

Supervisor: Oomens, C. (Supervisor 1) & van Turnhout, M. (Supervisor 2)

Student thesis: Master