Research output per year
Research output per year
The Aluminium research area focuses on the general aspects of aluminium design as well as its integration with related building aspects.
Contributing to structural use of aluminium in building and civil engineering
Research at the chair of Aluminium Structures considers the structural properties of aluminium alloys as well as how it is integrated into a wide range of structures. The research contributes to better understanding of structural performance, for example when subjected to fatigue loading or when exposed to fire. The research carried out in this area contributes to an adequate structural application of aluminium in buildings and other structures. This research is intended to make a significant contribution to the structural use of aluminium in building and civil engineering applications.
By analyzing the structural performance of aluminium structures with regard to areas such as fatigue, fracturing, joining and structural fire resistance the research area is contributing to better understanding its properties and improving the position of this material in building, civil engineering and other applications.
Our research themes
1. Make structures safe
- ductile response
- response to repetitive load
- response to fire and blast
Structures should be safe in use. It implies that the probability of failure is sufficiently low and that the structure ideally has the possibility to redistribute forces in case of a local failure or overload.
2. Enable / improve production
- bend / roll extruded sections
- (re)shape at various temperatures
- new applications
We model various production processes, such as cold bending of extruded sections. Our models provide predictions of the performance of the aluminium components during and after production. This enables or improves the production.
3. Reduce resources
- enhance existing structures
- re-use components
- optimize designs
Aluminium and its alloys are well known for their recycling possibilities. Aluminium can be melted and re-used, but it is also possible to demount old structures and reuse the components. Another possible application is the refurbishment and upgrading of existing structures, such as in case of bridge decks (see photos).
Our research relates to:
In many cases, the research concerns the development of optimised models to predict the structural response of real structures. Numerical simulation models are developed that are dedicated to a certain type of structural shape and loading condition. Small or full-scale tests in our laboratory are used for calibration and/or validation of these simulation models. The knowledge gained is transferred to design models that practitioners can apply in developing a structural design. See the chain of figures for an example. The research enhances the application of aluminium structures.
Person: OWP : University Teacher / Researcher
Person: OWP : University Teacher / Researcher
Person: UD : Assistant Professor
Research output: Contribution to journal › Article › Academic › peer-review
Research output: Contribution to journal › Article › Academic › peer-review
Research output: Contribution to journal › Article › Academic › peer-review
Supervisor: Maljaars, J. (Supervisor 1), Leonetti, D. (Supervisor 2) & Snijder, H. (Supervisor 2)
Student thesis: Master
Supervisor: Hofmeyer, H. (Supervisor 1), Maljaars, J. (Supervisor 2) & van Herpen, R. (Supervisor 2)
Student thesis: Master
Supervisor: Snijder, H. (. (Supervisor 1), Maljaars, J. (Supervisor 2) & van Loon, J. M. (External person) (External coach)
Student thesis: Master