Description of impact
The field of spintronics and its applications in nanoelectronics is
continuously revolutionized by new discoveries and its implementation in novel
devices, all related to new ways to manipulate or control spins. Most of these
spin concepts are targeted to new and efficient ways of manipulating
magnetization in confined magnetic objects, beyond the traditional use of
magnetic fields.
Crucial Breakthroughs
A number of crucial breakthroughs have been reported, such as the
concept of spin-transfer-torque, which is the possibility to change
magnetization via a spin current, voltage control of magnetism and magnetic
anisotropy for controlling magnetization by interfacial charging, creating spin
currents by the Spin-Hall effect in nonmagnetic materials in contact with
magnetized objects, and so-called Dzyaloshinskii-Moriya interactions favoring
novel chiral spin states.
Understanding and application
In our research group, all these new developments are studied with an
emphasis in the understanding and exploitation of these effects for
perpendicularly magnetized films, most of them related to the underlying
spin-orbit coupling. The physics involved is addressed by creating and
controlling domain-walls, by searching for chiral spin states such as
skyrmions, and by alternative schemes for magnetization switching and
domain-wall manipulation. Our contribution to the physics understanding of
these phenomena may have direct impact on the application prospects in future
memory, logic and sensing devices such as MRAM and racetrack solutions. In all
these novel spin concepts, energy-efficiency, non-volatility, and scaling
properties are intrinsic opportunities for industrial implementation.
Category of impact | Research Topic/Theme (at group level) |
---|